125 research outputs found

    Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities

    Get PDF
    International audienceThis paper proposes a qualitative approach to solve multi-criteria decision making problems under possibilistic uncertainty. De-pending on the decision maker attitude with respect to uncertainty (i.e. optimistic or pessimistic) and on her attitude with respect to criteria (i.e. conjunctive or disjunctive), four ex-ante and four ex-post decision rules are dened and investigated. In particular, their coherence w.r.t. the principle of monotonicity, that allows Dynamic Programming is studied

    Malicious Bayesian Congestion Games

    Full text link
    In this paper, we introduce malicious Bayesian congestion games as an extension to congestion games where players might act in a malicious way. In such a game each player has two types. Either the player is a rational player seeking to minimize her own delay, or - with a certain probability - the player is malicious in which case her only goal is to disturb the other players as much as possible. We show that such games do in general not possess a Bayesian Nash equilibrium in pure strategies (i.e. a pure Bayesian Nash equilibrium). Moreover, given a game, we show that it is NP-complete to decide whether it admits a pure Bayesian Nash equilibrium. This result even holds when resource latency functions are linear, each player is malicious with the same probability, and all strategy sets consist of singleton sets. For a slightly more restricted class of malicious Bayesian congestion games, we provide easy checkable properties that are necessary and sufficient for the existence of a pure Bayesian Nash equilibrium. In the second part of the paper we study the impact of the malicious types on the overall performance of the system (i.e. the social cost). To measure this impact, we use the Price of Malice. We provide (tight) bounds on the Price of Malice for an interesting class of malicious Bayesian congestion games. Moreover, we show that for certain congestion games the advent of malicious types can also be beneficial to the system in the sense that the social cost of the worst case equilibrium decreases. We provide a tight bound on the maximum factor by which this happens.Comment: 18 pages, submitted to WAOA'0

    Graphical models for interactive POMDPs: representations and solutions

    Get PDF
    We develop new graphical representations for the problem of sequential decision making in partially observable multiagent environments, as formalized by interactive partially observable Markov decision processes (I-POMDPs). The graphical models called interactive inf uence diagrams (I-IDs) and their dynamic counterparts, interactive dynamic inf uence diagrams (I-DIDs), seek to explicitly model the structure that is often present in real-world problems by decomposing the situation into chance and decision variables, and the dependencies between the variables. I-DIDs generalize DIDs, which may be viewed as graphical representations of POMDPs, to multiagent settings in the same way that IPOMDPs generalize POMDPs. I-DIDs may be used to compute the policy of an agent given its belief as the agent acts and observes in a setting that is populated by other interacting agents. Using several examples, we show how I-IDs and I-DIDs may be applied and demonstrate their usefulness. We also show how the models may be solved using the standard algorithms that are applicable to DIDs. Solving I-DIDs exactly involves knowing the solutions of possible models of the other agents. The space of models grows exponentially with the number of time steps. We present a method of solving I-DIDs approximately by limiting the number of other agents’ candidate models at each time step to a constant. We do this by clustering models that are likely to be behaviorally equivalent and selecting a representative set from the clusters. We discuss the error bound of the approximation technique and demonstrate its empirical performance

    Axiomatizations of two types of Shapley values for games on union closed systems

    Get PDF
    A situation in which a finite set of players can obtain certain payoffs by cooperation can be described by a cooperative game with transferable utility, or simply a TU-game. A (single-valued) solution for TU-games assigns a payoff distribution to every TU-game. A well-known solution is the Shapley value. In the literature various models of games with restricted cooperation can be found. So, instead of allowing all subsets of the player set N to form, it is assumed that the set of feasible coalitions is a subset of the power set of N. In this paper, we consider such sets of feasible coalitions that are closed under union, i.e. for any two feasible coalitions also their union is feasible. We consider and axiomatize two solutions or rules for these games that generalize the Shapley value: one is obtained as the conjunctive permission value using a corresponding superior graph, the other is defined as the Shapley value of a modified game similar as the Myerson value for games with limited communication. © 2010 The Author(s)

    Optimal negotiation strategies for agents with incomplete information

    No full text
    This paper analyzes the process of automated negotiation between two competitive agents that have firm deadlines and incomplete information about their opponent. Generally speaking, the outcome of a negotiation depends on many parameters-including the agents' preferences, their reservation limits, their attitude toward time and the strategies they use. Although in most realistic situations it is not possible for agents to have complete information about each of these parameters for its opponent, it is not uncommon for agents to have partial information about some of them. Under such uncertainty, our aim is to determine how an agent can exploit its available information to select an optimal strategy. Here, in particular, the optimal strategies are determined considering all possible ways in which time can effect negotiation. Moreover, we list the conditions for convergence when both agents use their respective optimal strategies and study the effect of time on negotiation outcome
    corecore